Maximum Number of Pairwise G-different Permutations

Louie Golowich and Richard Zhou

Mentor: Chiheon Kim
MIT-PRIMES
May 21, 2016

Colliding permutations

Definition

Two permutations of $1 \ldots n$ are colliding if at some position their corresponding entries are consecutive integers.

Colliding permutations

Definition

Two permutations of $1 \ldots n$ are colliding if at some position their corresponding entries are consecutive integers.

Example:

$$
\left.\begin{array}{lllll}
{[1,} & 2, & 3, & 4, & 5
\end{array}\right] \quad\left[\begin{array}{lllll}
1, & 2, & 3, & 4, & 5
\end{array}\right]\left[\begin{array}{llll}
1, & 2, & 5, & 4, \\
{[5,} & 4, & 2, & 1,
\end{array}\right]\left[\begin{array}{ll}
3
\end{array}\right]
$$

Families of pairwise colliding permutations

- What is the maximum size of a family of pairwise colliding permutations of $1 \ldots n$?

Families of pairwise colliding permutations

- What is the maximum size of a family of pairwise colliding permutations of $1 \ldots n$?
- Example:

$n=3$			$n=4$			
			1	2	3	4
2	1	3	1	2	4	3
1	2	3	3	1	2	4
1	3	2	4	1	2	3
2	3	1	4			
			4	4	1	3

Known results

Theorem

The maximum size of a family of pairwise colliding permutations is at $\operatorname{most}\binom{n}{\lfloor n / 2\rfloor}$.

- This upper bound is conjectured to be tight, and has been verified for $n<8$.
- The best lower bound currently known is $\sim 1.7^{n}$. (Note that upper bound is $\sim 2^{n}$.)

G-different permutations

Definition

For any graph G, let two permutations σ and π of subsets of $V(G)$ be G-different if there exists a position i for which $(\sigma(i), \pi(i)) \in E(G)$.

Definition

For any graph G with n vertices, let $F(G)$ be the maximum size of a family of pairwise G-different permutations.

G-different permutations

Definition

For any graph G, let two permutations σ and π of subsets of $V(G)$ be G-different if there exists a position i for which $(\sigma(i), \pi(i)) \in E(G)$.

Definition

For any graph G with n vertices, let $F(G)$ be the maximum size of a family of pairwise G-different permutations.

- If $L(n)$ is a path on n vertices, then $L(n)$-different permutations are equivalent to colliding permutations.
- We want to bound $F(L(n))$ as $n \rightarrow \infty$.

Bipartite Graphs

Bipartite graph:

Complete bipartite graph: Each vertex in one set connected to every vertex in the other set.

Complete Bipartite Graphs: A Basic Result

Lemma

Let $K_{a, n-a}$ be a complete bipartite graph with a vertices on one side and $n-a$ vertices on the other. Then $F\left(K_{a, n-a}\right)=\binom{n}{a}$.

Complete Bipartite Graphs: A Basic Result

Lemma

Let $K_{a, n-a}$ be a complete bipartite graph with a vertices on one side and $n-a$ vertices on the other. Then $F\left(K_{a, n-a}\right)=\binom{n}{a}$.

Note that any bipartite graph G with a vertices on one side and $n-a$ on the other satisfies $F(G) \leq F\left(K_{a, n-a}\right)=\binom{n}{a}$

Focus of Our Project: Bipartite Graphs

- Arbitrary graphs are too general: we have focused on bipartite graphs

Focus of Our Project: Bipartite Graphs

- Arbitrary graphs are too general: we have focused on bipartite graphs
- Path and complete bipartite graph are extremes:
- Path has the least number of edges among connected bipartite graphs
- Complete bipartite graph has the most

Focus of Our Project: Bipartite Graphs

- Arbitrary graphs are too general: we have focused on bipartite graphs
- Path and complete bipartite graph are extremes:
- Path has the least number of edges among connected bipartite graphs
- Complete bipartite graph has the most
- Conjectured to have same maximal pairwise colliding family size
- What happens in the in-between cases?

Recursion for putting lower bounds on $F(G)$

Lemma
Let (x, y) be an edge in G. Then $F(G) \geq F(G-\{x\})+F(G-\{y\})$.

Recursion for putting lower bounds on $F(G)$

Lemma
Let (x, y) be an edge in G. Then $F(G) \geq F(G-\{x\})+F(G-\{y\})$.

Recursion for putting lower bounds on $F(G)$

- Consider a family $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{F(G-\{x\})}\right\}$ of pairwise G-different permutations of $V(G-\{x\})$ and a family $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{F(G-\{y\})}\right\}$ of pairwise G-different permutations of $V(G-\{y\})$.
- Then concatenate x and y back on:
\(\left.$$
\begin{array}{c}\underset{\substack{G(G-\{x\})+F(G-\{y\}) \\
G \text {-different permutations } \\
\text { of } V(G)}}{ }\left\{\begin{array}{ll}x & \pi_{1} \\
x & \pi_{2} \\
\vdots \\
x & \pi_{F(G-\{x\})}\end{array}
$$\right\} \begin{array}{c}F(G-\{x\}) permutations

of V(G-\{x\})

y

y

\sigma_{1}

\sigma_{2}

\vdots

y\end{array} \sigma_{F(G-\{y\})}\end{array}\right\}\)| $F(G-\{y\})$ permutations |
| :---: |
| of $V(G-\{y\})$ |

Complete bipartite graph with matching removed

Theorem

Let $G(n, a)$ be the bipartite graph with n vertices, a of which are in the first subset and $n-a$ of which are in the second subset, such that $G(n, a)$ is complete with a maximal matching removed. Then for all $n \geq 3$,

$$
F(G(n, a))=\binom{n}{a} .
$$

Complete bipartite graph with matching removed

Theorem

Let $G(n, a)$ be the bipartite graph with n vertices, a of which are in the first subset and $n-a$ of which are in the second subset, such that $G(n, a)$ is complete with a maximal matching removed. Then for all $n \geq 3$,

$$
F(G(n, a))=\binom{n}{a} .
$$

- Strict equality in the above equation requires a sufficient base case.
- For the base case here, a simple construction gives

$$
F(G(n, 1))=F(G(n, 2))=3 .
$$

Two variable recursion for bounding $F(G)$

- Recursion: $F(G(n, a)) \geq F(G(n-1, a-1))+F(G(n-1, a))$.

\[

\]

Maximum degree of complement a constant

Definition

Let $F\left(n, a, \Delta_{c}\right)$ be the minimum value of $F(G)$ over all bipartite graphs G with n vertices, a of which are in the first subset, such that the maximum degree of the complement of G is Δ_{c}.

Maximum degree of complement a constant

Definition

Let $F\left(n, a, \Delta_{c}\right)$ be the minimum value of $F(G)$ over all bipartite graphs G with n vertices, a of which are in the first subset, such that the maximum degree of the complement of G is Δ_{c}.

Theorem
For any constant nonnegative integer Δ_{c}, there exists a constant s such that

$$
F\left(n, a, \Delta_{c}\right) \geq s\binom{n}{a}
$$

for all n and a.

Two variable recursion for bounding $F(G)$

- Removing a vertex cannot increase Δ_{c}.
- Recursion: $F(G(n, a)) \geq F(G(n-1, a-1))+F(G(n-1, a))$.

Increasing the maximum degree of complement

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F\left(n,\left\lfloor\frac{n}{2}\right\rfloor, o(n)\right)=1
$$

- Loosely speaking, this means that if $\Delta_{c}=o(n)$, then $F(G)$ grows on the order of 2^{n} as $n \rightarrow \infty$ when G is balanced $(a=n-a)$.

Increasing the maximum degree of complement

Theorem

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F\left(n,\left\lfloor\frac{n}{2}\right\rfloor, o(n)\right)=1
$$

- Loosely speaking, this means that if $\Delta_{c}=o(n)$, then $F(G)$ grows on the order of 2^{n} as $n \rightarrow \infty$ when G is balanced $(a=n-a)$.
- This theorem makes us ask: how much can we increase Δ_{c} while keeping $F(G)$ on the order of 2^{n} ?

Conjecture

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F\left(n,\left\lfloor\frac{n}{2}\right\rfloor, \frac{n}{c}\right)=1
$$

where $c>2$.

Union of disjoint graphs

- Previously known: If G_{1} and G_{2} are disjoint graphs, then

$$
F\left(G_{1} \cup G_{2}\right) \geq F\left(G_{1}\right) \cdot F\left(G_{2}\right)
$$

- Therefore if $F\left(G_{1}\right) \approx 2^{\left|V\left(G_{1}\right)\right|}$ and $F\left(G_{2}\right) \approx 2^{\left|V\left(G_{2}\right)\right|}$ then

$$
F\left(G_{1} \cup G_{2}\right) \approx 2^{\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|}=2^{\left|V\left(G_{1} \cup G_{2}\right)\right|} .
$$

- When formalized, this idea can be used to show that the union of many disjoint subgraphs is on the order of 2^{n}.

Formalizing the union of disjoint subgraphs

Theorem

Let G be a balanced bipartite graph consisting of the union of k disjoint balanced complete bipartite graphs $G_{1}, G_{2}, \ldots, G_{k}$. If

$$
k=O\left(\frac{n}{\log _{2} n}\right)
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F(G)=1
$$

Formalizing the union of disjoint subgraphs

Theorem

Let G be a balanced bipartite graph consisting of the union of k disjoint balanced complete bipartite graphs $G_{1}, G_{2}, \ldots, G_{k}$. If

$$
k=O\left(\frac{n}{\log _{2} n}\right),
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F(G)=1
$$

Corollary

There exists a graph G with maximum degree $O\left(\log _{2} n\right)$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F(G)=1
$$

Future Work

Conjecture

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F\left(n,\left\lfloor\frac{n}{2}\right\rfloor, \frac{n}{c}\right)=1
$$

where $c>2$.
Current strategy:

- Partition graph into large, balanced bi-cliques
- Apply union of disjoint subgraphs strategy
- Issue: removing large cliques disrupts structure of graph

In sparser graphs, large bi-cliques cannot always be found: must be partitioned into other types of subgraphs.

Acknowledgements

We would like to thank:

- Our mentor Chiheon Kim
- Head mentor Dr. Khovanova
- Our parents
- MIT PRIMES

